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Abstract

A general class of scale-separating operators based on combined multigrid operators is proposed and analyzed in
this work. The operators of this class are designed for variational multiscale large eddy simulation using a finite volume
or finite element method. Two representatives are compared to discrete smooth filters, which are widely used in the tra-
ditional large eddy simulation literature; the comparison shows that they are not only theoretically different, but also
yield considerable differences in the respective numerical results. Dynamic as well as constant-coefficient-based subgrid-
scale modeling is used within the multiscale environment. All of the scale-separating operators are implemented in a
second-order accurate energy-conserving finite volume method and tested for the case of a turbulent channel flow.
One operator shows particularly remarkable results in the framework of the variational multiscale large eddy simula-
tion, that is, profiles are obtained for velocity and kinetic energy which are considerably closer to the respective profiles
from a direct numerical simulation than are the profiles resulting from the application of the other operators considered
in the present study. Furthermore, this particular operator proves to be very efficient with regard to the important
aspect of computational cost, that is, a reduction in computing time ranging from about 25% up to about 150% com-
pared to the other operators. The introduction of a substantial amount of subgrid viscosity to the small scales, partic-
ularly in the buffer layer of the channel, appears to be crucial for the good results achieved with this method.
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1. Introduction

Large eddy simulation (LES) is widely considered to be a promising approach for the numerical simu-
lation of turbulent flows. Although the computational effort usually required for LES is considerably less
than the one for a direct numerical simulation (DNS), in which scales of the order of magnitude of the
smallest length scale, the Kolmogorov scale, are resolved (see [47]), it is still of substantial complexity.
LES aims at a complete resolution of only the large-scale structure of the turbulent flow. The effect on
the large scales of the smaller scales, which are not acquired by this resolution, is modeled. Thus, a basic
ingredient of the approach consists of the separation of resolved and unresolved scales. General overviews
of the classical LES procedure may, for instance, be found in [53] or [54]. Some recent advances for LES in
complex geometries are reported in [46].

The variational multiscale method was established as a theoretical framework in [24] and further devel-
oped for general problems in computational mechanics in [25]. The basic concept involves separating the
problem scales into a predefined number of scale groups. This theoretical framework was also applied to
the problem of the incompressible Navier–Stokes equations in [26], in order to facilitate LES of turbulent
flows. The initial concept of the variational multiscale method, as Hughes and co-workers proposed it in
their publications, assumes a separation of two scale ranges. Nevertheless, the framework allows various
other arrangements going beyond this two-scale decomposition. In [4,14], the variational multiscale method
for LES has recently been broadened by raising the number of separated scale ranges beyond the original
twofold separation. A completely different numerical treatment for any of these ranges is enabled. Such a
three-scale separation accounts specifically for large resolved scales, small resolved scales, and unresolved
scales.

Apart from the initial separation and potentially different treatment of the respective scale ranges, two
important aspects characterize the variational multiscale LES. Firstly, a variational projection separates
scale ranges within the variational multiscale method rather than a spatial filter in the traditional LES. Sec-
ondly, the (direct) influence of the subgrid-scale model is confined to the small resolved scales. Thus, the
large resolved scales are solved as a DNS (i.e., without any (direct) influence of the modeling term). Of
course, the large resolved scales are still influenced indirectly by the subgrid-scale model due to the inherent
coupling of all scales. A new residual-based variant of the variational multiscale LES which retracts this
second aspect has recently been developed in [2].

At this stage, it should be pointed out that the variational multiscale method is essentially a theoretical
framework for the separation of scales. Corresponding practical implementations within the variational
multiscale framework are still rare. For such practical methods, it is crucial that a clear separation of
the different scale ranges is actually achieved. The scale-separating approach developed in the present study
is implemented into the CDP-a code, the flagship LES code of the Center for Turbulence Research. It is the
recently redesigned and rewritten version of the original CDP code [52] (named after the late Charles David
Pierce, 1969–2002). Underlying the code is a colocated finite volume method particularly suited for appli-
cations on unstructured grids. Within this computational environment, the separation of scales is developed
in this work.

In the traditional LES, the theoretical way of identifying the resolved part of the velocity ures consists of
applying a spatial filter G to the unknown velocity u in the domain X, resulting in
uresðx; tÞ ¼
Z
X
Gðx� nÞuðn; tÞ dn: ð1Þ
This procedure was first proposed in [39]. In practice, however, most of the numerical simulations per-
formed in physical space do not rely on a spatial filtering process like (1), unless the so-called ‘‘pre-filtering
technique’’ is used, see [54]. Rather, the resolution of the underlying numerical discretization is used to
define the resolved part of the velocity uh, with the superscript h indicating the characteristic length scale
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of the discretization. Nevertheless, the application of a spatial filter in the sense of (1) may become neces-
sary, for instance, for separating the resolved scales into large and small resolved scales in the context of a
dynamic modeling procedure. This produces a large-scale velocity uh.

The three most commonly used filters for LES are the box filter, the Gaussian filter, and the sharp or
spectral cutoff filter. It is referred to [54] for a discussion of these filters. Of these, only the sharp cutoff filter
has the property of a projector for the multiple application of the operator, that is,
Ĝ
n ¼ Ĝ � Ĝ � � � � � Ĝ ¼ Ĝ; n > 1: ð2Þ
Applications of the variational multiscale method for LES in spectral space, such as, e.g., [27,28], were exe-
cuted in a straightforward manner using the sharp cutoff filter.

In physical space applications, the situation becomes much more complicated. Discrete filters with com-
pact support are usually applied. They may be identified as discrete approximations of the filter G in (1)
(i.e., as discrete approximations of the box filter or the Gaussian filter in physical space), see [55]. All those
filters commute with differentiation, a prerequisite for the formulation of the filtered Navier–Stokes equa-
tions, in homogeneous cases, see [54]. However, problems occur both for the continuous filter itself and the
discrete approximation when using homogeneous filters for inhomogeneous cases, for instance, as soon as a
domain boundary is approached. The need for the filtering to be commutative with differentiation also in
inhomogeneous cases was emphasized in [13]. Moreover, second-order commuting continuous filters were
developed to address this problem. In [62], this strategy was extended to higher-order commuting filters as
well as discrete approximations of the continuous filters.

Some applications of the variational multiscale method were accomplished without relying on a varia-
tional projection as the scale-separating operation (i.e., merely applying the subgrid-scale model to the
small resolved scales). The filtering analog of the variational multiscale method provides the framework
in this case, see [63]. For the actual simulations, a discrete approximation of a top-hat filter based on
the trapezoidal rule was applied in [33] as well as [63], and good results were obtained. These findings raise
questions concerning the importance of the actual scale-separating operators used as well as the necessity
for this operator to be a projector. The present study addresses these questions.

As aforementioned, it is intended to implement all scale-separating operators into the existing hybrid
unstructured finite volume code CDP-a. In the context of discrete filters, this requires representations suited
for unstructured grids. Commutative discrete filters for unstructured grids were developed in [44], using the
work of [62] as a starting point. Subsequently, a new construction procedure based on least-squares tech-
niques was presented in [21]. Filters for unstructured cases based on the numerical solution of high-order
elliptic problems were proposed in [49]. For finite element methods, in particular, a number of discrete
filters suited for application on unstructured grids were described in [31]. One of them, a node-oriented dis-
crete version of a box filter, was then further investigated in [58,59] on structured finite element grids.

In this work, unstructured analogs of the discrete filters based on the trapezoidal rule as well as on Simp-
son�s rule are used. The results achieved with these discrete filters are compared to the results obtained with
the general class of scale-separating operators, based on combined multigrid operators in a two-grid pro-
cedure,which are proposed in this work. In contrast to the unstructured analogs of the discrete filters, the
representatives of this class of scale-separating operators are equally suited for the application within both a
finite volume method and a finite element method. One particular representative of this class indeed has the
property of a projector. A projector of this type was also addressed in [37] as well as [64]. In [37], it was used
for a combined finite element/volume method on the basis of a cell-agglomeration procedure.

Beyond the scale-separating operators mentioned above, there exist other ways to achieve a separation
of scales. In [32], a hierarchical-based continuous Galerkin finite element method was used, which had pre-
viously been developed in [66]. Here, shape functions up to a certain polynomial degree p represent the large
scales, and the remaining shape functions up to the level of resolution are supposed to capture the smaller
scales. In a discontinuous Galerkin method, this may be done in a similar way, see [5]. In the classical
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notion of finite element methods, such methods may be denoted as ‘‘p-type’’ scale separations (i.e., based on
the polynomial degree of the approximation), in contrast to ‘‘h-type’’ scale separations based on the discret-
ization characterized by the length scale h.

A completely different way to address the problem was shown in [16,17]. The equation system consisting
of the equation related to the large scales (i.e., the large-scale equation) and the equation related to the
small scales (i.e., the small-scale equation) was, in fact, handled as a pair of coupled non-linear variational
equations. This is in compliance with the original perception in [26], where the large- and the small-scale
part of the solution is expected to be obtained by solving those coupled non-linear equations. In the imple-
mentable approach in [16,17], the large- and small-scale equations were independently solved in an iterative
procedure, updating the dependencies of the respective equation on the other scales. Furthermore, a local-
ized approach was chosen on the small-scale level. As a result, this approach is, on the one hand, very effi-
cient from the computational point of view. On the other hand, however, it substantially limits the potential
amount of small scales captured due to the neglect of non-local interdependencies within the small scales.

The proposed methods of this work are applied to the case of a turbulent channel flow. A large number
of numerical realizations of turbulent flow in a channel already exist. The results from a DNS for flows at
three different Reynolds numbers
Res ¼
usdc
m

up to 590 were reported in [48], where us,dc, and m denote the turbulent wall-shear velocity, the channel half-
width, and the kinematic viscosity, respectively. The data from that report will be used as reference data in
the present work, where flows at Reynolds numbers 180 and 590 will be investigated. Turbulent channel
flow also served as one of the first test cases for the variational multiscale LES in [28]. That study was later
complemented by Oberai and Hughes [50], reporting the case Res = 590. Another study in this respect was
[33], comparing the subgrid-scale modeling approach of the variational multiscale method with other mod-
eling approaches in the context of turbulent channel flow.

All of the aforementioned studies have one important aspect in common: the use of a spectral method
with higher-order accuracy in the homogeneous x1–x3-planes of the channel. In this work, the method ap-
plied is of second-order accuracy overall, without any special treatment for the homogeneous planes within
the channel. With regard to future applications in more complex geometries, performance of the variational
multiscale LES within such a numerical environment is the more relevant test case, since spectral methods
are by no means suited to such applications. The introduction of a generally larger numerical error due to
the use of a second-order accurate method, combined with a relatively coarse resolution, was investigated in
[38] at a high-Reynolds-number channel flow (Res � 1000). Similar evaluations were reported in [56] for a
flow at an even higher Reynolds number Res � 1800 as well as in [61] for flows at the Reynolds numbers
Res = 180 and Res = 590.

This work basically follows the general guideline expressed in the idea that there exists an inherent link
between, on the one hand, physically motivated turbulence modeling and, on the other hand, numerically

motivated modeling to account for inevitable errors due to an inadequate resolution. A combined strategy rely-
ing on this observation has already been pointed out as a very promising tool in [4,14]. Another recent ap-
proach appearing to step in the same direction is the work in [36]. Initial considerations of this approach
seem to establish this method as a counterpart of the variational multiscale method within a finite difference
method (D. Carati, B. Knaepen, personal communication).

The rest of this paper is organized as follows. In Section 2, the variational formulation for a separation
of three scales, namely large resolved, small resolved, and unresolved scales, is introduced. The various
scale-separating operators are presented and analyzed in Section 3. Additionally, the specific treatment
of Dirichlet boundaries is addressed and the characteristic length-scale ratio of the operators is identified
preliminarily. In Section 4, subgrid-scale modeling within the variational multiscale LES is addressed. Some
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aspects of the implementation in the CDP-a code are mentioned in Section 5, followed by the description of
the numerical simulations of turbulent channel flow in Section 6. Section 7 contains conclusions of this
study.
2. Variational three-scale formulation

The set of incompressible Navier–Stokes equations is given as
ou

ot
þr � ðu� uÞ þ rp � 2mr � eðuÞ ¼ f in X� ð0; T Þ; ð3Þ

r � u ¼ 0 in X� ð0; T Þ; ð4Þ
where u denotes the velocity vector, p the kinematic pressure (i.e., pressure divided by density), m the kine-
matic viscosity, which is assumed to be constant, e(u) the rate-of-deformation tensor, defined as the sym-
metric part of the spatial gradient of the velocity subject to
eðuÞ ¼ 1
2
ruþ ðruÞT
h i

;

f the body force vector, X the spatial domain with domain boundary C, and T the simulation time. Fur-
thermore, a Dirichlet boundary condition
u ¼ g on C� ð0; T Þ; ð5Þ

where the domain boundary C is assumed to be a pure Dirichlet boundary, and an initial condition
u ¼ u0 in X� f0g;

where the initial velocity field u0 is assumed to be divergence-free, are defined. Aside from Dirichlet bound-
ary conditions, only periodic boundary conditions are used in the numerical example at the end of the pres-
ent study. Thus, Neumann boundary conditions are omitted here, although they would basically pose no
additional problem for the developments of this work.

A weighted residual formulation of the Navier–Stokes equations is given as follows: find fu; pg 2 Sup,
such that
BNSðv; q; u; pÞ ¼ ðv; f ÞX 8fv; qg 2 Vup; ð6Þ

where v and q denote the weighting functions. Sup and Vup represent the combined form of the solution
and weighting function spaces, respectively, for velocity and pressure in the sense that Sup :¼ Su �Sp

and Vup :¼ Vu �Vp. The L2-inner product in the domain X on the right-hand side of (6) is defined as
usual:
ðv; f ÞX ¼
Z
X
v � f dX: ð7Þ
Using the notation in (7), the form BNS (v,q;u,p) on the left-hand side of (6), which is linear on the first slot
(i.e., v,q) and non-linear on the second slot (i.e., u,p), is defined as
BNSðv; q; u; pÞ ¼ v;
ou
ot

� �
X

þ ðv;r � ðu� uÞÞX þ ðv;rpÞX � ðv; 2vr � eðuÞÞX þ ðq;r � uÞX: ð8Þ
The scales of the problem are now separated into three scale ranges, as proposed in [4,14]: large resolved
scales, small resolved scales, and unresolved scales. In terms of the underlying weighting and solution func-
tion spaces Vup and Sup, this scale separation yields
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Vup ¼ Vup �V0
up � V̂up;

Sup ¼ Sup �S0
up � Ŝup:
According to this, the weighting functions read
v ¼ vþ v0 þ v̂; q ¼ qþ q0 þ q̂
and, analogously, the solution functions are composed as
u ¼ uþ u0 þ û; p ¼ p þ p0 þ p̂:
Since it is linear in the weighting functions v and q, Eq. (6) may now be decomposed into a system of three
equations as
BNSðv; q; uþ u0 þ û; p þ p0 þ p̂Þ ¼ ðv; f ÞX 8fv; qg 2 Vup; ð9Þ
BNSðv0; q0; uþ u0 þ û; p þ p0 þ p̂Þ ¼ ðv0; f ÞX 8fv0; q0g 2 V0

up; ð10Þ
BNSðv̂; q̂; uþ u0 þ û; p þ p0 þ p̂Þ ¼ ðv̂; f ÞX 8fv̂; q̂g 2 V̂up; ð11Þ
It is assumed that
BNSðv; q; û; p̂Þ þ ðv;r � ððuþ u0Þ � ûþ û� ðuþ u0ÞÞÞX � 0; ð12Þ

relying on a clear separation of the large-scale space and the space of unresolved scales. Note that assump-
tion (12) is the same as assuming locality of interactions in Fourier space. As a result, the large-scale equa-
tion (9) may be simplified to
BNSðv; q; uþ u0; p þ p0Þ ¼ ðv; f ÞX 8fv; qg 2 Vup: ð13Þ

It is not intended to explicitly resolve any quantities which are termed ‘‘unresolved’’ a priori. Thus, Eq. (11)
for the unresolved scales is not solved. Taking into account the effect of the unresolved scales onto the small
scales is the only desire. Several approaches lend themselves to this purpose (see [14]), but the focus here is
on the subgrid viscosity concept as a usual and well-established way of taking into account the effect of
unresolved scales in the traditional LES. The small-scale equation (10) then reads
BNSðv0; q0; uþ u0; p þ p0Þ � v0;r � 2m0Teðu0Þ
� �� �

X
¼ ðv0; f ÞX 8fv0; q0g 2 Vup: ð14Þ
Due to assumption (12), the subgrid viscosity term directly acts only on the small resolved scales. Indirect
influence on the large resolved scales, however, is ensured due to the coupling of the large- and the small-
scale equations. Appropriate modeling approaches for the subgrid viscosity m0T, where the prime indicates
the relation to the small resolved scales, will be discussed in Section 4. Note that the reason for introducing
a model term in the present formulation is mathematically slightly different from the usual necessity of
introducing a model term due to the appearance of a subgrid-scale stress tensor in the strong formulation
of the Navier–Stokes equations in a classical LES. Nevertheless, the physical necessity of accounting for the
missing effect of unresolved scales onto the resolved scales is the same in both cases.

The weighted residual equations above may serve as the starting point for either a finite element formu-
lation or a finite volume formulation. The inherent link between these two numerical methods is pointed
out, for instance, in [29]. A particular finite element method based on the combined system consisting of
the large- and small-scale equations (13) and (14) may be found in [16,17].

The focus here is on the finite volume method. The presupposition for the application of the finite vol-
ume method is a discretization of the domain X into ncv control volumes Xi (i = 1, . . .,ncv), with control vol-
ume boundaries Ci. The weighting functions are chosen to be
vh ¼
X
i

vhi ; qh ¼
X
i

qhi ;
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where
vhi ¼ 1; qhi ¼ 1 in Xi ð15Þ

and zero elsewhere. In (15), 1 explicitly means that each component of vhi is of unit value. The characteristic
control volume length of the discretization is h. With these definitions at hand, the weighted residual equa-
tion (6) may be reformulated as a variational finite volume equation for each vhi and qhi : find fuh; phg 2 Sh

up,
such that
BFV
NSðvhi ; qhi ; uh; phÞ ¼ ðvhi ; f ÞX: ð16Þ
The term on the right-hand side of (16) may be defined analogously to (7) as
ðv; f ÞCi
¼
Z
Ci

v � f dC;
where Ci denotes the boundary of the support of vhi and qhi , respectively. Furthermore, the semi-linear form
BFV
NSðvhi ; qhi ; uh; phÞ on the left-hand side of (16) is obtained from (8) after applying Gauss� theorem to the con-

vective term, the pressure term, the viscous term, and the continuity term as
BFV
NSðvhi ; qhi ; uh; phÞ ¼ vhi ;

ouh

ot

� �
X

þ ðvhi ; ðuh � uhÞ � nÞCi
þ ðvhi ; ph � nÞCi

� ðvhi ; vðruhÞ � nÞCi
þ ðqhi ; uh � nÞCi

:

ð17Þ

In (17), n indicates the respective outward normal vector of unit length to Ci. Note the change of the viscous
term from the stress-divergence form in the weighted residual formulation in (8) to the conventional form for
the finite volume formulation in (17). This change may already be carried out here in view of the actual imple-
mentation, where the divergence of the velocity will be monitored to remain as close to zero as possible
throughout the simulation and, thus, the fulfillment of the continuity equationwill be approximately achieved
in the discrete case. The same change will be carried out for the subgrid viscosity term below. Further infor-
mation on the monitoring of the discrete fulfillment of the continuity equation will be provided in Section 5.

The scale separation to be presented in Section 3 relies on a level of complete resolution, which is indi-
cated by the characteristic control volume length h. In terms of the velocity, this reads
uh ¼ ðuþ u0Þh:

With respect to this complete resolution level, a large-scale resolution level is identified a priori. This level is
characterized by the control volume length h, where h > h, and, accordingly, yields a large-scale velocity uh.
The small-scale velocity is consistently defined on the complete resolution level, characterized by the length
h, as
u0h ¼ uh � uh; ð18Þ

where uh is the large-scale value transferred to this level. The large-scale weighting function is defined as
vh ¼
X
i

vhi ;
where
vhi ¼ 1 in Xi
and zero elsewhere. Xi denotes the ith control volume of the discretization with the characteristic control
volume length h. The large-scale equation (13) and the small-scale equation (14) with the subgrid viscosity
term are now reunified on the basis of the preceding finite volume formulation. The unified equation may be
written in compact form with the help of (18) for each vhi ; qhi ; and vhi , where the control volume Xi on the
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complete resolution level is contained in the control volume Xi on the large-scale resolution level: find
fuh; phg 2 Sh

up, such that
BFV
NSðvhi ; qhi ; uh; phÞ � v0hi ; m

0
Tðru0hÞ � n

� �
C0
i

¼ BFV
NSðvhi ; qhi ; uh; phÞ � vhi ; m

0
T r uh � uh

� �� �
� n

� �
Ci
þ vhi ; m

0
T r uh � uh

� �� �
� n

� �
Ci

¼ BFV
NSðvhi ; qhi ; uh; phÞ � vhi ; m

0
T ruh
� �

� n� ruh
� �

� n
� �� �

Ci
þ vhi ; m

0
T ruh
� �

� n� ðruhÞ � n
� �� �

Ci

¼ ðvhi ; f ÞX; ð19Þ
where the boundary Ci is split up into a large-scale boundary Ci and, accordingly, a small-scale boundary
subject to
C0
i ¼ Ci � Ci: ð20Þ
The commutation between differentiation and the definition of the large scales in terms of a projection
ensuring the equality of the second and the third line in (19) remains to be proven. A proof in this regard
may be found in [34] in the context of a finite element formulation for a viscous term integrated by parts
and defined on the domain Xi rather than the boundary Ci. However, that proof may be transferred to this
case in a straightforward manner. The inherent scale separation remains obvious in (19) merely due to the
subgrid viscosity term.
3. Separation of scales

The scale-separating transformation is generally formulated as
uh ¼ S uh
� �

; ð21Þ
where S denotes the scale-separating operator acting on a finite-dimensional velocity field uh and yielding a
finite-dimensional large-scale velocity field uh.

3.1. Discrete smooth filters for scale separation

Discrete filters based on weighted averages with compact support are usually applied in practical LES.
The two most prominent representatives are obtained by applying either the trapezoidal rule or Simpson�s
rule. In [55], it was shown that discrete filters may be constructed in two steps. Firstly, the continuous con-
volution filter in (1) is approximated by a truncated Taylor series expansion in the sense of a continuous
differential operator. Secondly, this continuous differential operator is discretized to obtain a discrete form
of the operator. In order to compute the large-scale part uhi of a piecewise linear scalar function uh in the
control volume Xi as part of a uniform 1-D discretization, this is given as
uhi ¼ 1
4
ðuhi�1 þ 2uhi þ uhiþ1Þ
for the trapezoidal rule and
uhi ¼ 1
6
ðuhi�1 þ 4uhi þ uhiþ1Þ
for Simpson�s rule. In the three-dimensional case, a discrete filter for a structured grid of hexahedra may be
constructed in two ways: either by linear combination or by product. Following the strategy of construction
by linear combination, we may finally end up with the face-based filter described in [31]. However, it is well
known that filters constructed by linear combination are less sensitive to the cross modes than the ones
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constructed by product, see [54]. Due to this, construction by product is used throughout this work. Following
the rules for construction by product in [55], the large-scale velocity vector in the center of Xi is obtained as
uhi ¼
1

8
uhi þ

1

16

Xnfpcv
f¼1

uhf þ
1

32

Xnepcv
e¼1

uhe þ
1

64

Xnnpcv
n¼1

uhn ð22Þ
for the trapezoidal filter and
uhi ¼
8

27
uhi þ

2

27

Xnfpcv
f¼1

uhf þ
1

54

Xnepcv
e¼1

uhe þ
1

216

Xnnpcv
n¼1

uhn ð23Þ
for Simpson�s filter, with the number of faces nfpcv, edges nepcv, and nodes nnpcv per control volume being 6,
12, and 8, respectively. uhf ; uhe ; and uhn denote the velocity vectors at the center of control volumes sharing
at most one face, one edge, and one node with Xi, respectively.

In the unstructured case, a two-step procedure for constructing the filters is performed, with the goal of
reproducing formulas (22) and (23) in the structured case. For the trapezoidal filter, a volume-weighted
averaging procedure at every node including all control volumes Xi attached to this node is performed sub-
ject to
uhn ¼
P

i2In jXijuhiP
i2In jXij

; ð24Þ
with In denoting the index set containing all control volumes i attached to node n. As a result, a large-scale
velocity uhn at node n is obtained. It should be noted that, for unstructured grids with abrupt variations of
volume measures within small distances, it may be advisable to use a simple non-volume-weighted average
instead of (24). Afterwards, the large-scale velocity at the center of the control volume is collected as the
averaged value, calculated by including all nodes of this control volume according to
uhi ¼
1

nnpcv

X
n2Ni

uhn; ð25Þ
where Ni denotes the index set containing all nodes n of the control volume i. A filter created by this two-
step procedure was used in [22]. It may be verified by the reader that the formula in (22) can be recovered
for the structured case by removing the volume weighting in (24). The unstructured trapezoidal filter
defined by (24) and (25) is labeled Stf.

An unstructured analog of Simpson�s filter is more involved in that it uses an edge- as well as a face-
based data transfer, in addition to the node-based transfer for the trapezoidal filter. The volume-weighted
averaging at edges and faces reads
uhe ¼
P

I2Le jXljuhlP
I2Le jXlj

; uhf ¼
P

m2Mf
jXmjuhmP

m2Mf
jXmj

; ð26Þ
with Le and Mf denoting the index sets containing all control volumes attached to the interiors of edge e

and face f, respectively. The node-, edge-, and face-based values in (24) and (26) are now collected in an
averaged sense, including the actual value in the control volume. The large-scale velocity at the center of
the control volume is then obtained as
uhi ¼
1

nnpcv þ nepcv þ nfpcv þ 1

X
n2Ni

uhn þ
X
e2Ei

uhe þ
X
f2F i

uhf þ uhi

" #
; ð27Þ



V. Gravemeier / Journal of Computational Physics 212 (2006) 400–435 409
where Ei and Fi denote the index sets containing all edges e and all faces f of the control volume i. Again, it
may be verified by the reader that the formula in (23) can be recovered for the structured case by removing
the volume weighting in (24) and (26). The unstructured version of Simpson�s filter defined by (24), (26),
and (27) is labeled Ssf.

3.2. Combined multigrid operators for scale separation

As a geometrical basis for the present approach, two grids are created: a coarser grid, which is called the
‘‘parent’’ grid, and a finer grid, which is called the ‘‘child’’ grid. The child grid is obtained by an isotropic
hierarchical subdivision of the parent grid, similar to the procedure described in [45]. In contrast to a usual
parent–child relationship in multigrid solvers, where the parent needs to know only the number of its chil-
dren, a complete parent–child knowledge base is set up here (i.e., every parent knows about every child and
vice versa). More details concerning the implementation will be given in Section 5.

Remarks

1. Hybrid unstructured grids may contain tetrahedra, hexahedra, prisms, and pyramids. However, only
two different types of faces, namely triangles and quadrangles, occur for these four different types of con-
trol volumes. Based on the fact that a factor of two is most often used in a dynamic modeling procedure
for the relation of the cutoff length scale for the large resolved scales to the one for all resolved scales, an
initial subdivision procedure using this factor is chosen. Both a parent triangular face and a parent qua-
drangular face subdivided isotropically result in four child faces of the same type. For the actual 3-D
control volumes, isotropic subdivision of either a parent tetrahedron or hexahedron, for example, results
in eight children. A parent hexahedron along with its eight child hexahedra is depicted in Fig. 1. Illus-
trations of subdivided tetrahedra, prisms, and pyramids may be found in [45]. Obviously, this kind of
refinement is not restricted to a subdivision by factor 2. Other integer factors (e.g., 3 or 4) may be applied
and result in considerably lower ratios of the spaces containing the large resolved scales to the spaces
containing the small resolved scales.

2. Several references concerning multigrid methods in general may be found in the literature. An introduc-
tory work with particular emphasis on applications in computational fluid dynamics is, for instance, [65].
In particular, Chapter 5 of [65] deals with the topics of restriction and prolongation. Some sections in
[10] are also devoted to multigrid methods in the context of computational fluid dynamics.

The general class of scale-separating operators based on multigrid operators is defined as
uh ¼ Sm½uh� ¼ P � R½uh� ¼ P ½uh�; ð28Þ
parent children

isotropic
subdivision

Fig. 1. Parent hexahedron with eight child hexahedra.
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where the scale-separating operator Sm consists of the sequential application of a restriction operator R and
a prolongation operator P. Applying the restriction operator on uh yields a large-scale velocity uh defined at
the degrees of freedom of the parent grid, which is then prolongated, in order to obtain a large-scale veloc-
ity uh defined at the degrees of freedom of the child grid. Various restriction as well as prolongation oper-
ators may be used in (28).

Here, however, the attention is focused on two special combinations of restriction and prolongation
operators. Both of them rely on the same restriction operator, but apply different prolongation operators
afterwards. The restriction operator is defined to be a volume-weighted average over all the child control
volumes within one parent control volume subject to
uhj ¼
P

i2Nj
jXijuhiP

i2Nj
jXij

; ð29Þ
where uhj denotes the large-scale velocity at the center of the parent control volume Xj and Nj the index set
containing all child control volumes in Xj. The first prolongation operator Pp yields a constant prolonga-
tion as
uhi ¼ P p uhj

h i
i
¼ uhj 8Xi 	 Xj ð30Þ
and zero elsewhere. The scale-separating operator defined as
Spm :¼ P p � R ð31Þ

has the property of a projector, indicated by the additional superscript ‘‘p’’. A scale-separating projection
such as (31) is already well-known in the context of wavelets (see, e.g., [6] for a general overview). For struc-
tured grids, the restriction operator R defined in (29) is exactly the Haar-basis low-pass transform and the
prolongation operator Pp defined in (30) is exactly the Haar-basis low-pass adjoint transform. More general
projections for applications on unstructured grids may be found in [1,7]. Besides the special case (31) con-
sidered here, any scale-separating operator Sm: = P � R represents a projection with respect to the child
grid, whenever P � R = I on the parent grid.

The second prolongation operator considered in this work yields a linear prolongation subject to
uhi ¼ P s uhj

h i
i
¼ uhj þ rhuhj

� �
� ri � rj
� �

8Xi 	 Xj ð32Þ
and zero elsewhere. The vectors ri and rj denote geometrical vectors pointing to the centers of the child con-
trol volume Xi and the parent control volume Xj, respectively. The discrete gradient operator rh on the
parent grid is here defined, e.g., for the application on the velocity vector uhj at the center of the parent con-
trol volume Xj as
rhuhj ¼
X
n2V j

wj
n � uhn � uhj

� �
; ð33Þ
where V j denotes the index set containing all neighbouring parent control volumes n of the parent control
volume j. The vectorial geometrical weighting parameter wj

n depends on a measure of the parent control
volume Xj, a measure of the respective neighbouring parent control volume Xn, and the difference between
rj and the geometrical vector pointing to the center of Xn (i.e., w

j
n ¼ wj

n jXjj; jXnj; rn � rj
� �

). The geometrical
weighting parameter wj

n is constructed by a least-squares procedure in the present case. Alternatives for the
calculation of the discrete gradient operator (e.g., using Gauss� theorem) are conceivable, see [10].

Due to the linear prolongation, values from neighbouring parent control volumes and, consequently, child
control volumes contained in these neighbouring parent control volumes influence the final large-scale value
in the child control volume Xi. The prolongation Ps does not provide us with a projective scale-separating
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operation. It rather produces a smoothing prolongation, which is, at least, smoother than the prolongation
produced byPp. Thus, it is indicated by the additional superscript ‘‘s’’ and the complete scale-separating oper-
ator is defined as
(

Fig. 2.
interpo
Ssm :¼ P s � R:

The fact that Ssm is not a projector, in contrast to Spm, is easily shown already for a simple model problem
on a uniform 1-D discretization, see Fig. 2. Being a projector refers to the basic requirement that a multiple
application of the scale-separating operator is equal to a single application, which has already been stated
for the sharp cutoff filter in spectral space in (2). In Fig. 2, Spm and Ssm are applied twice to a 1-D curve. For
Spm, the large-scale value at the center of a parent control volume, obtained as a result of the restriction
(29), is injected to all child control volumes of this parent control volume according to (30), see the middle
part of Fig. 2(a). The same curve is achieved for the repeated application of Spm, see the lower part of
Fig. 2(b). Already for this simple 1-D model problem, it can be shown that Ssm does not share the projective
property due to the inequality of the curves in the middle and the lower part of Fig. 2(b). Of course, the
same may be inferred for the unstructured 3-D case. The dashed line in Fig. 2(b) indicates the linear inter-
polation of the large-scale values at the centers of the parent control volumes, which are obtained as a result
of the restriction (29). Fig. 2(b) shows that, in contrast to the situation in Fig. 2(a), the left and right neigh-
bour parent control volumes have to be taken into account to determine the values in the child control vol-
umes of the depicted parent control volumes 1–3.

Alternative definitions for the restriction as well as the prolongation operator are certainly conceivable.
For example, differential operators with additional volume weighting on non-uniform grids were used in [61]
to define the restriction and prolongation operators for those author�s multilevel algorithm. However, their
specific choice for the parameters within the differential operators extended the scope of the operators even
beyond the nearest neighbour of a coarse grid control volume. This is due to the fact that, on the one hand,
their restriction operator took into account fine-grid control volumes located in neighbouring coarse-grid
control volumes and, on the other hand, their prolongation operator, similar to Ps, was influenced by neigh-
bouring coarse-grid control volumes. At boundaries, in particular, such an extended range of influence
pcv 1 pcv 2 pcv 3 pcv 1 pcv 2 pcv 3

uh

S uh

S S uh

a) (b)

[

[ [ ] ]

]

Applying the multigrid scale-separating operators twice for a 1-D model problem: (a) pm; (b) sm (dashed line indicates linear
lation of the large-scale values at the parent control volume centers).
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including child control volumes within the next to nearest neighbour parent control volume might lead to
substantial problems in the context of an implementation such as the one which will be described in the
subsequent section.

With regard to the overall strategy in, e.g., [61], it should be emphasized that it is not intended to per-
form an actual solution step on the parent grid based on the restriction operator used in the present study,
although the choice of combined multigrid operators as scale-separating operators basically opens up this
opportunity. In this work, the focus is on the influence of the scale separation on the quality of the results
(i.e., accuracy is the main goal of this work). In a subsequent study, the attention may be shifted to the
potential gain in computational efficiency due to the exploitation of the parent grid (or further, even coarser
grids) for an actual solution strategy in the sense of a multigrid solver.

It will now be briefly shown that Spm, besides being a projector, represents a self-adjoint operator. In
[64], the adjoint filter of a general continuous filter, later specialized to a continuous kernel filter in the sense
of (1), and the adjoint filter of a general discrete filter were determined. Here, this procedure is transferred
to the case of a scale-separating operator acting on a discrete field subject to (21). At first, two important
conditions are addressed. The normalization condition requires a discrete constant field to remain unaltered
by the scale-separating operation subject to
S½ch� ¼ ch; ð34Þ

where ch = 1 throughout the domain X. It may be verified by the reader that (34) is satisfied for all oper-
ators defined in Sections 3.1 and 3.2. The conservation condition requires the discrete integral of an arbi-
trary function f h over the domain X to remain unaltered by the application of the scale-separating operator
in the sense that
X

i

S½f h�ijXij ¼
X
i

f h
i jXij; i ¼ 1; . . . ; ncv: ð35Þ
It is referred to [64] for a discussion of the implications of the conservation condition.
The adjoint scale-separating operator Sa corresponding to S is defined in a discrete sense as
X

i

Sa½f h�ighi jXij ¼
X
i

f h
i S½gh�ijXij; i ¼ 1; . . . ; ncv; ð36Þ
for two arbitrary discrete functions f h and gh. It can be proven that a scale-separating operator satisfying
the normalization condition (34) corresponds to an adjoint scale-separating operator fulfilling the conser-
vation condition (35):
X

i

Sa½f h�ijXij ¼
X
i

Sa½f h�ichi jXij ¼
X
i

f h
i S½ch�ijXij ¼

X
i

f h
i c

h
i jXij ¼

X
i

f h
i jXij:
This leads to the conclusion that a self-adjoint scale-separating operator (i.e., an operator for which S = Sa)
also represents a conservative operator, if S satisfies (34). Nevertheless, it should be emphasized that the
converse is not true (i.e., a normalized and conservative scale-separating operator does not necessarily im-
ply that this operator is self-adjoint), see [64].

If the scale-separating operator in control volume Xi is now defined by way of its underlying matrix Aij

subject to
S½f h�i ¼
X
j2NH

AijjXjjfj 8i 2 NH; ð37Þ
the adjoint scale-separating operator may then easily be obtained based on the transpose of the matrix as
Sa½f h�i ¼
X
j2NH

AjijXjjfj 8i 2 NH: ð38Þ
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In (37) and (38), NH denotes the geometrical ‘‘neighbourhood’’ of control volume Xi containing all control
volumes Xj contributing to the calculation of the large-scale value in Xi. For S

tf and Ssf, NH is defined to
contain all control volumes Xj sharing at least one node with Xi. For S

pm, NH contains all remaining child
control volumes within the same parent control volume. Additionally, all child control volumes in parent
control volumes sharing a face with the actual parent control volume are also included in the definition of
NH for Ssm. By inserting (37) and (38) in the definition of the adjoint operator (36), the reader may verify
the correctness of (38). It may be stated that a self-adjoint scale-separating operator necessarily requires its
underlying matrix to be symmetric, that is,
pa

a

Aij ¼ Aji: ð39Þ

For Spm, the underlying matrix reads
Aij ¼
1P

j2Nk
jXjj

;

where Nk denotes the index set containing all child control volumes in the respective parent control volume
Xk. The matrix obviously satisfies condition (39). Hence, the underlying matrix of Spm is symmetric, and
Spm is proven to be a self-adjoint operator. Due to this, Spm also fulfills the conservation condition (35).
Proof of any self-adjointness of Ssm, Stf, and Ssf and, thus, satisfaction of the conservation condition
(35) may be done following the principles mentioned above.

Finally, the validity of (19) in a complete sense (i.e., explicit representation of all terms in (19)) with re-
spect to the subgrid viscosity term remains to be analyzed. For the discrete smooth filters, large-scale
boundaries (i.e., Ci) and small-scale boundaries (i.e., C0

i) subject to (20) are not explicitly distinguished.
Thus, it is trivial to verify that these filters, in contrast to the scale-separating operators based on combined
multigrid operators, do not satisfy (19) in a complete sense. This is due to the fact that the third term in the
second line of (19) cannot be represented. Nevertheless, there is also a crucial difference between Spm and
Ssm in this context: there is no large-scale (subgrid) viscous flux for Spm across the small-scale boundary
subject to (20). This may already be pointed out for the 1-D case by surveying Figs. 2(a) and (b). It is obvi-
ous that Spm yields the same value in both child control volumes of any parent control volume, see Fig. 2(a).
Thus, there is no derivative (or gradient in 2-D and 3-D, respectively) of the large-scale function at inner
small-scale boundaries within any parent control volume, and the large-scale part of the subgrid viscosity
term at these boundaries is ensured to be zero. As a result, (19) may be specified for Spm as
BFV
NS vhi ; q

h
i ; u

h; ph
� �

� v0hi ; m
0
T ruh
� �

� n
� �

C0
i
¼ vhi ; f
� �

X
: ð40Þ
Fig. 2(b) illustrates the configuration for Ssm, where, in general, a non-zero large-scale subgrid viscosity
term has to be expected even at the inner (small-scale) boundaries. Thus, (40) is not valid in this case. In
Fig. 3, the definition of large- and small-scale boundaries in the finite volume method is re-emphasized
v h

v h

child control volumerent control volume

b

′

Fig. 3. Geometrical locations of weighting functions in the FVM for a 2-D case: (a) large-scale; (b) small-scale.
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for the 2-D case. The large-scale weighting function vh is exclusively defined on the large-scale boundaries
belonging to the parent control volume, as shown in Fig. 3(a). The small-scale weighting function v0h has
non-zero values only on the inner boundaries of the child control volumes, see Fig. 3(b).

3.3. Treatment of Dirichlet boundaries

Periodic boundaries used in the numerical examples at the end of the present study do not pose any
problems for the scale-separating operators defined in the preceding sections. Hence, it may be focussed
on the remaining Dirichlet boundaries. Dirichlet boundaries are implemented in CDP-a via so-called
‘‘fake’’ control volumes. The fake control volumes are actually located outside of the problem domain X
and ‘‘mirror’’ their corresponding control volume inside of the problem domain X (i.e., they are assigned
the same geometry as the corresponding inner control volume). In particular, the center of the fake control
volume is located at double the distance from the center of the inner control volume to the Dirichlet bound-
ary. Thus, the fake control volume center is located at the same distance from the Dirichlet boundary as the
inner control volume center. In Fig. 4, the situation in a 1-D setting is depicted for simplicity. Nevertheless,
it may easily be generalized to an unstructured 3-D case by locating the center of the fake control volume at
double the distance from the center of the inner control volume normal to the respective face of the inner
control volume on the Dirichlet boundary to the center of this face.

In Fig. 4, the scalar value uhf in the fake control volume Xf is defined by the value uhi in the neighbouring
inner control volume Xi as well as the (discrete) Dirichlet boundary condition gh subject to
uhf ¼ 2gh � uhi : ð41Þ

For one of the scale-separating operators, Ssm, it is necessary to define Dirichlet boundary conditions for
the large-scale velocity analogous to (5) for the calculation of the large-scale velocity at the center of bound-
ary control volumes. As an assumption for this purpose, the fulfillment of the Dirichlet boundary condition
is entirely attributed to the large-scale velocity, such that
u ¼ g on C� ð0; T Þ; ð42Þ
which implies
u0 ¼ 0 on C� ð0; T Þ:

Thus, (41) is also valid for the large-scale values, such that
uhf ¼ 2gh � uhi :
Remark. Since g = 0 at all channel walls in the simulations at the end of the present study, besides periodic

boundary conditions at all other channel boundaries, the large-scale Dirichlet boundary condition (42) is
exact and actually does not represent an assumption, which it, however, would amount to for non-zero g.
For more complex boundary conditions, more sophisticated assumptions for the distribution of the
fake cv cv “i” cv “j”

uh
f

uh
i

uh
j

gh

boundary

Fig. 4. Implementation of Dirichlet boundaries in a 1-D setting.
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complete Dirichlet boundary condition (5) among large- and small-scale Dirichlet boundary conditions
might become necessary.

The essential difference between the various scale-separating operators becomes obvious in the calcula-
tion of the large-scale value uhi . Both discrete smooth filters of Section 3.1 have to take into account fake
values in this particular implementation. For Stf, the large-scale value in Xi is obtained as
uhi ¼ 1
4
uhf þ 2uhi þ uhj
� �

;

where uhj denotes the value in the control volume Xj, as shown in Fig. 4. Ssf yields an analogous formula
with different coefficients. In both cases, the definition of the large-scale Dirichlet boundary condition is
required for the calculation of the large-scale flux terms through the faces at the Dirichlet boundary. As
aforementioned, in case of Ssm, uhi depends on the definition of the large-scale Dirichlet boundary condition
(42). This is due to the fact that the parent grid gradient operatorrh in the prolongation step (32) takes into
account the respective large-scale fake value as defined in (33), which, in turn, is subject to (42). It may be
contrasted to the discrete smooth filters, where the necessary fake values depend on the complete Dirichlet
boundary condition (5). The only scale-separating operator entirely relying on values inside the problem
domain X (excluding the domain boundary C) is Spm.

3.4. Characteristic length-scale ratios associated with the scale-separating operators

The determination of the characteristic length scale associated with the various scale-separating opera-
tors is an important ingredient of the dynamic modeling procedure to be presented in Section 4. More pre-
cisely, the ratio of the characteristic length scales h=h is the only parameter required for the dynamic
models. The importance of the accuracy of this ratio was emphasized in [41,59]. Nevertheless, the actual
value of the characteristic length scale of the basic discretization h is required for the standard Smagorinsky
model based on a constant coefficient. As usual, the characteristic length scale of the child control volume
Xi is assumed to be the cube root of the respective measure, that is,
hi ¼ jXij1=3: ð43Þ

A straightforward extension of (43) leads to the characteristic length scale of the parent control volume Xi,
which contains the child control volume Xi, as
hi ¼ jXij1=3
and, thus, to a characteristic length-scale ratio
hi
hi

¼ 2 ð44Þ
in the case of an isotropic refinement of each parent control volume by a factor of 2, as described in Section
3.2.

The characteristic length-scale ratio (44) may be assigned, for the time being, to the restriction operator
R, which is identical for both scale-separating operators Spm and Ssm, as it was also done in [64]. In that
study, the ratio 2 was assigned to a ‘‘filter’’ operator similar to Spm, given that another filter operator cor-
responding to Ssm was not considered. In the present study, however, two obviously different prolongation
operators have been introduced, a constant prolongation Pp and a linear prolongation Ps. The first question
is now, which one of the two scale-separating operators Spm and Ssm indeed has to be assigned to the ratio
2. In this author�s view, as a first conclusion, the ratio 2 should only be attributed to Ssm, since this scale-
separating operator assumes a linear interpolation of the solution function on the child grid as well as on
the parent grid based on the values at the control volume centers, see Fig. 2(b) for a one-dimensional
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representation. Considering the solid line in the upper part of Fig. 2(b) and the dashed line in the middle
part of Fig. 2(b), it is stated that both the interpolation of the values on the child grid and the interpolation
of the large-scale values on the parent grid are piecewise linear interpolation curves. Thus, both curves ex-
hibit the same character and they are only distinguished by the fact that one of the curves is assigned to a
grid which is coarser by a factor of 2. By comparing Fig. 2(a) to (b), the essential difference of the two oper-
ators in this context becomes obvious. Whereas the curve in the upper part of Fig. 2(a) represents a piece-
wise linear interpolation of the values on the child grid, the curve in the middle part of Fig. 2(a) consists of,
on the one hand, piecewise constant interpolations inside of each parent control volume and, on the other
hand, piecewise linear interpolations which cannot be assigned to the characteristic length scale h (i.e., the
one twice as large as h in the present case). Thus, a second question arises, asking whether the characteristic
length-scale ratio for Spm is larger or smaller than the one for Ssm. Given the theoretical considerations so
far, a final assessment related to this second question does not appear to be clear at this stage. However, the
present study aims at estimating the characteristic length-scale ratio depending on the actual results of the
numerical simulations.
4. Subgrid-scale modeling within the multiscale environment

4.1. Smagorinsky model

The Smagorinsky model [57] was the first subgrid-scale model historically and is still a commonly used
one due to its attractive simplicity. Adopting the usual filter-related notation to the underlying situation
where the resolved part of the velocity is defined by the discretization with characteristic length scale h,
the subgrid viscosity can be expressed as
mT ¼ ðCShÞ2jeðuhÞj: ð45Þ

The Smagorinsky model constant is denoted by CS in (45). The actual evaluation of (45) is performed in
every child control volume Xi using the length-scale definition (43) for the calculation of hi, so that a value
mT,i in every child control volume is obtained. The weak point of the Smagorinsky model is represented by
the constant CS in (45). Numerous authors have addressed this issue, and perhaps the most important
improvement has been achieved by the dynamic modeling procedure in [12], which will be dealt with in
the following section. Despite the well-known flaws of the constant-coefficient Smagorinsky model, the inte-
gration of this simple model in the framework of the variational multiscale method has already led to good
results for a number of test cases. The present study focuses on the specific modification of the model
restricting the dependence on the small scales subject to
m0T ¼ CShð Þ2je u0h
� �

j ¼ CShð Þ2je uh � uh
� �

j; ð46Þ
which was named ‘‘small–small’’ model in [26] and seems to be the most natural version within the multi-
scale formalism. Other versions are a ‘‘large–small’’ model using only the large-scale part of the velocity for
the calculation of the rate-of-deformation tensor e, which was mainly introduced for achieving some gain in
computational efficiency in [26], and the original definition in (45) as an ‘‘all–small’’ model, which was ap-
plied, for instance, in a dynamic modeling procedure in [23]. As for (45), the actual evaluation of (46) is
performed in every child control volume Xi, using the same length scale definition (43) for the calculation
of hi. In the end, a value m0T;i in every child control volume is obtained. Test simulations in the course of this
work have shown at most comparable results for the large–small and all–small model with respect to the
small–small model, but no superior results. Thus, applications of the Smagorinsky model based on a con-
stant coefficient are executed and reported using (46) exclusively. The constant CS is chosen to be 0.1 for the
channel flow simulations according to the original choice in [8].
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4.2. Dynamic modeling procedure based on the classical Germano identity

The dynamic modeling procedure proposed in [12] enables a computation of the constant CS as a func-
tion of time and position. Thus, the model constant CS will now be considered a model parameter in the
context of the dynamic modeling procedure. The procedure is basically not restricted to using the Smago-
rinsky model as the underlying model, although it has usually been applied with this model. It is interesting
to note that the dynamic modeling procedure already distinguishes large resolved scales, small resolved
scales, and unresolved scales explicitly. This mirrors the type of scale separation in the variational three-
scale formulation.

The dynamic modeling procedure is based on the Germano identity (see, e.g., [11]), which will be named
the ‘‘classical Germano identity’’. With this labeling, it is explicitly distinguished from the ‘‘variational Ger-
mano identity’’, which has recently been introduced in [51]. Due to the pointwise formulation of the clas-
sical Germano identity, the dynamic procedure starts with a pointwise formulation of the Navier–Stokes
equations for the discretized variables uh and ph. The momentum equation is given as
ouh

ot
þr � ðuh � uhÞ þ rph � 2mr � e uh

� �
þr � sh ¼ f h; ð47Þ
where the subgrid-scale stress tensor is defined as
sh ¼ ðu� uÞh � uh � uh: ð48Þ

Note that in (47) and (48) the usual filtered formulation is replaced by the actual implicit scale-separation
based on the chosen discretization with characteristic length scale h. The ‘‘test filter’’ is replaced by the
scale-separating operators of Section 3. Thus, the analog of the ‘‘subtest’’-scale stress tensor can be ex-
pressed as
sh ¼ ðu� uÞh � uh � uh ¼ S ðu� uÞh
h i

� S½uh� � S½uh�: ð49Þ
The basic procedure yields a value for the parameter CS at every degrees of freedom of the child grid. The
classical Germano identity related to the child grid discretization level states the following:
Lh ¼ sh � S½sh�; ð50Þ

where Lh can be obtained as
Lh ¼ uh � uh � uh � uh ¼ S½uh � uh� � S½uh� � S½uh�

by inserting (48) and (49) into (50). The Smagorinsky model is now assumed as an appropriate modeling
term at both discretization levels. Furthermore, it should account for the fact that the Smagorinsky model
within the subgrid viscosity concept is basically a ‘‘trace-free’’ model for incompressible flow (i.e., the rate-
of-deformation tensor e, which will appear in the following model formulation, has a zero trace). Thus, only
the deviatoric part, devLh, of the tensor Lh in (50) can be modeled as
devLh ¼ Lh � 1
3
trLhI � �2ðCShÞ2jS½eðuhÞ�jS½eðuhÞ� þ S½2ðCShÞ2jeðuhÞjeðuhÞ�; ð51Þ
where I denotes the identity tensor. Both the rate-of-deformation tensor of the finite-dimensional velocity
field e(uh) and its scale-separated value S[e(uh)] will be ensured to have a trace as close to zero as possible in
the actual numerical simulations, see Section 5 for elaboration. It is assumed that CS is at least constant
over one control volume of the parent grid or the appropriate measure for the discrete smooth filters,
respectively. Hence, (51) may be rewritten as
devLh � ðCShÞ2 2S jeðuhÞjeðuhÞ
� �

� 2
�h
h

� �2

jS½eðuhÞ�jS½eðuhÞ�
 !

¼ ðCShÞ2Mh: ð52Þ
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The calculation of the parameter expression (CSh)
2 on the right-hand side of (52) aims to minimize the error

tensor
Eh ¼ devLh � ðCShÞ2Mh: ð53Þ

Using the least-squares approach proposed in [40], the formula for the parameter expression reads
ðCShÞ2 ¼
devLhMh

MhMh : ð54Þ
Potential numerical problems may have to be faced related to either unbounded or negative (and, thus,
anti-dissipative) values for the parameter expression (CSh)

2, jeopardizing the stability of the simulation.
As an artificial measure to account for this, both numerator and denominator in (54) are averaged over
the homogeneous planes of the channel in the numerical simulations at the end of the present study. Addi-
tionally, clipping is performed (i.e., potential negative values for the parameter expression (CSh)

2 are set to
zero artificially).

Remark. The application of the scale-separating operators based on combined multigrid operators opens
up the opportunity to determine the values for the parameter CS only at the degrees of freedom of the
parent grid subject to
sh ¼ ðu� uÞh � uh � uh ¼ R ðu� uÞh
h i

� R½uh� � R½uh� ð55Þ
by using the restriction operator exclusively. In order to maintain comparability with the other scale-sep-
arating operators, (49) will be preferred to (55) in the numerical simulations in Section 6. Nevertheless, the
alternative procedure will also be briefly outlined in the following.

The classical Germano identity related to the parent grid discretization level reads
Lh ¼ sh � R½sh�; ð56Þ

where Lh can be obtained as
Lh ¼ uh � uh � uh � uh ¼ R½uh � uh� � R½uh� � R½uh�

by inserting (48) and (55) into (56). Replacing the scale-separating operator S by the restriction operator R
as well as the superscript h by the superscript h in (51)–(54) then yields the respective equations for the alter-
native case.
5. Aspects of the implementation

All numerical simulations which will be presented in the upcoming section have been done using the
CDP-a code. CDP is an unstructured finite-volume-based CFD code designed for LES of variable density
low Mach-number flows on very large grids, using massively parallel computers. It was developed at Stan-
ford University as part of the Department of Energy�s Accelerated Strategic Computing Initiative (ASCI).
In particular, it was intended to be used for LES of reacting multiphase flow in complex geometry. It is
written in Fortran 90 and uses MPI for parallelization. CDP-a is the new redesigned and rewritten version
of CDP (see [52]), initiated in 2003. The reader may consult a series of Annual Research Briefs of the Center
for Turbulence Research, the latest two being [42,18], for a detailed description of the several development
stages leading to the current code. A basic version of CDP-a suited for the numerical simulation of incom-
pressible flows has served as a foundation for implementing the developments of the present work.

The temporal and spatial discretization underlying CDP-a is described in [15]. The main features are the
use of a fractional-step procedure with a four-step scheme (see, e.g., [3]) and the momentum interpolation
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method for unstructured colocated grids according to [35]. The Crank–Nicolson scheme, a fully implicit
time-stepping scheme of second-order accuracy, is applied to the convective and viscous terms. The non-
linear convective term is linearized about the result of the previous time step. All spatial and temporal
approximations are of second-order accuracy, as shown in [15]. Furthermore, discrete conservation of en-
ergy is enforced. The discrete representation of the convective and the pressure term are the crucial aspects
for guaranteeing discrete conservation of energy. These issues are addressed in detail in [43]. The particular
reconstruction for the pressure term used in the current version of CDP-a is described in [19]. Plots quan-
tifying the discrete conservation of energy for a number of test problems may be found in [43,19]. The
momentum equation in the first step of the fractional-step procedure is solved using a simple iterative
SOR solution procedure. For the solution of the pressure Poisson equation in the third step of the frac-
tional-step procedure, an algebraic multigrid solver is used. See [18] for the details as well as some inves-
tigations concerning the performance of this multigrid solver.

The divergence of the velocity is monitored throughout the simulation. It is checked several times during
each time step by calculating the divergence of the velocity in each control volume and writing out the max-
imumandminimumvalues for all control volumes.The divergence of the velocity has been calculated to be less
than 10�12 in all control volumes for all numerical simulations conducted for the present study. In this con-
nection, the trace of the rate-of-deformation tensor of the finite-dimensional velocity field e(uh), which is equiv-
alent to the discrete divergence of the velocity, and the trace of its scale-separated value S[e(uh)] have also been
ensured to be less than 10�12 in all control volumes. The monitoring of the trace of the scale-separated rate-
of-deformation tensor is obviously only necessary for simulations with a dynamic modeling procedure. For
the (relatively simple) grid generation in the case of the channel simulations, a preprocessing program called
CART2CDP is applied, enabling the generation of grids within simple cartesian geometries. Afterwards, the
preprocessing produces Np separate grid partition files, where Np denotes the number of processors used for
the simulation with CDP-a. For a detailed description of the preprocessing stage, it is again referred to [18].

For the simulations in this work, the (coarser) parent grid is initially generated during a first preprocess-
ing stage, performed as a single-processor procedure. Afterwards, the (finer) child grid is obtained by an
isotropic hierarchical subdivision during a second preprocessing stage. The first preprocessing stage and,
thus, the initial parent grid generation is executed in a sequential program independent of CDP-a, as men-
tioned above. However, the second preprocessing may be done in parallel as part of CDP-a. For grids con-
taining a very high number of control volumes, substantial savings in computing time may be achieved by
this strategy in comparison to a generation of the child grid during the first single-processor preprocessing
stage. The generation of a child grid starting from a (coarser) parent grid is used for all simulations in Sec-
tion 6 (i.e., also for the calculations using discrete smooth filters as well as the non-multiscale calculations),
in order to ensure comparability in terms of the grid geometry.

As already mentioned in Section 3.2, a complete parent–child knowledge base is set up (i.e., every parent
knows about every child and vice versa). The arrays covering the geometrical information for the child grid
are created on the basis of the existing geometrical information for the parent grid. The respective parent
control volume is transformed to a unit control volume and predetermined standardized data for the respec-
tive unit geometry is retrieved. Afterwards, it is transformed back to the actual control volume, including all
new child control volumes. Aside from the required geometrical information, the complete set of connectiv-
ity arrays for the child-control-volume-to-child-face relation, which is necessary for the finite volume code, is
developed from the existing connectivity arrays for the parent grid. In particular, (outer) faces assigned to
the large-scale boundary Ci are explicitly distinguished from (inner) faces belonging to the small-scale
boundary C0

i, a distinction unnecessary in usual finite volume codes. For the trapezoidal filter (24)–(25), a
connectivity array covering the relation between child control volumes and child nodes has to be provided.
An additional array for the connectivity of child control volumes and child edges, besides the already existing
connectivity arrays, is required for Simpson�s filter (26)–(27). As a final step of the second (parallel) prepro-
cessing stage, the processor communication pattern for the child grid is generated.
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The four scale-separating operators introduced in Section 3 are covered by separate subroutines, which
are called at several stages of the calculation procedure. At the beginning of each time step, an initial scale
separation is performed for the velocity field, in order to provide values for the calculation of coefficients
for the matrix and right-hand side related to the momentum equation. Within the actual solution proce-
dure, the respective scale-separating subroutine is executed at the beginning of each solver iteration step,
in order to determine the updated large-scale velocity field for the residual calculation. All of these calls
are not required for Spm due to the validity of (40) in this case. This is a source of substantial savings in com-

putational effort in comparison to the other operators. Additional calls of the scale-separating subroutines or,
for Spm, the only calls, respectively, are necessary during a dynamic modeling procedure.
6. Numerical example: turbulent channel flow

6.1. Setup for numerical simulations

Five important aspects related to the setup for the numerical simulations are addressed in this section:
the channel dimensions, the initial condition, the boundary conditions (including the driving mechanism),
the spatial and the temporal resolution. A sketch of the channel geometry is displayed in Fig. 5.

Flows at two different Reynolds numbers, Res = us dc/m = 180 and Res = 590, are performed, marking
the lower and upper end of the study in [48]. The turbulent wall-shear velocity us ¼

ffiffiffiffiffi
sw

p
, where sw denotes

the wall-shear stress, and the channel half-width dc (see Fig. 5) define the Reynolds number Res, besides the
kinematic viscosity m. According to [48], the channel dimensions are chosen to be slightly different for the
two cases. For the low Reynolds number case, L1 · L2 · L3 = 2pdc · 2dc · (4/3)pdc and, for the high Rey-
nolds number case, L1 · L2 · L3 = 2pdc · 2dc · pdc, where the channel half-width dc is fixed to be of unit
length.

A parabolic velocity profile perturbed by a random velocity fluctuation of 10%-amplitude of the bulk
mean streamwise velocity represents the initial condition u0 for the velocity field:
u1ðx2; t ¼ 0Þ ¼ u1;cð1� x22Þ þ 0:1u1;mwran;

u2ðx2; t ¼ 0Þ ¼ 0:1u1;mwran;

u3ðx2; t ¼ 0Þ ¼ 0:1u1;mwran;
x1
x2

x3

L1

L3

flow direction

L2

δc

δc

Fig. 5. Sketch of channel geometry.
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where u1,c denotes the streamwise velocity at the centerline of the channel, u1,m the bulk mean streamwise
velocity, and wran a random number, taken to be in the interval [�1,1]. In order to obtain the initial velocity
field at the beginning of each simulation, a value for wran is randomly generated at the center of each control
volume using the Fortran intrinsic function ‘‘ran’’. For the lower Reynolds number case, it is chosen that
u1,c = 25 and, hence, u1,m = 2u1,c/3 = 16.7 for the underlying parabolic profile. The values for the higher
Reynolds number case are u1,c = 28 and, accordingly, u1,m = 18.7.

No-slip boundary conditions are applied at the upper and lower wall perpendicular to the x2-direction, see
Fig. 5. In x1- as well as x3-direction, periodic conditions for the velocity are applied on the boundaries.
Additionally, a driving mechanism for the flow has to be provided. This is done by imposing a body force
in form of a driving pressure gradient in the streamwise x1-direction. Thus, the body force vector reads
f ¼
fp
0

0

2
64

3
75 ¼

1:0

0

0

2
64

3
75:
The specific choice of a unit value for fp aims at a unit value for the turbulent wall-shear velocity us in the
statistically steady state, subject to the relation
us ¼
ffiffiffiffiffiffiffiffiffi
fpdc

p
�

ffiffiffiffiffi
fp

p
¼ 1:0
(see, e.g., [9]).
Relatively coarse spatial resolutions using 32 control volumes in all coordinate directions for the lower

Reynolds number case and 64 control volumes in all coordinate directions for the higher Reynolds number
case, respectively, are employed. The distribution of control volumes in the wall-normal x2-direction obeys
a cosine function, refining towards the walls for the parent grid, with the subsequent isotropic subdivision
procedure applied. As usual, the characteristic length scales are expressed in non-dimensional length units
h+ = h/dm = hus/m, scaling the actual characteristic control volume length by the viscous length scale dm. The
control volume lengths in the respective coordinate directions correspond to hþ1 ¼ 35:34; hþ2;min ¼ 1:73;
hþ2;max ¼ 17:56; and hþ3 ¼ 23:56 for the lower Reynolds number case and hþ1 ¼ 57:92; hþ2;min ¼ 1:42;
hþ2;max ¼ 28:92; and hþ3 ¼ 28:96 for the higher Reynolds number case, respectively. Results for finer resolu-
tions in both cases (i.e, doubling the number of control volumes in the wall-normal and spanwise direction)
may be found in an extended version of the present study [15].

The respective time-step value for the temporal resolution is evaluated based on a fixed choice of the CFL
number. The CFL number is calculated according to the definition in [35]. For both Reynolds numbers, the
CFL number is prescribed to be 0.65. 5000 time steps are performed to allow the flow to develop, and the
statistics are collected during another 5000 time steps. The flow is assumed to be statistically stationary dur-
ing the statistical period. The average value of the actual time steps during the statistical period, expressed
in wall units dtþ ¼ dtu2s=m, ranges from 0.71 up to 0.73 (0.86) for the lower Reynolds number case and from
0.83 up to 0.92 (1.00) for the higher Reynolds number case. The notably higher values in parentheses are
obtained for calculations which simply apply the Smagorinsky model in a non-multiscale environment. The
average value of the actual time step corresponds to an overall averaging period, expressed in wall units
Tþ

av ¼ T avu2s=m, ranging from 3550 up to 3650 (4300) and from 4150 up to 4600 (5000), respectively. All
of the actual time-step values are expected to be considerably less than the Kolmogorov time scale and,
hence, to fulfill the condition formulated in [3].

6.2. Compared values and methods

Decomposing, for instance, the streamwise component u1 of the velocity into a mean value Æu1æ and a
fluctuating part ~u1 in the statistical sense yields for the underlying case an extended equation as
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u1 ¼ hu1i þ ~u1 ¼ huh1 þ u0h1 þ û1i þ ~u1 ¼ huh1i þ hû1i þ ~u1:
As usual in LES, it is assumed that hû1i � 0 (i.e., the unresolved scales do not contribute to the average
value). In the following sections, the mean streamwise resolved small-scale velocity hu0h1 i is investigated
explicitly, besides the usual comparison of the mean streamwise resolved velocity huh1i. Mean values are ob-
tained by averaging over all time steps of the statistical period as well as over homogeneous x1–x3 planes.
Both mean values are scaled by the wall-shear velocity us in the respective diagrams.

The components of the Reynolds stress tensor sR are expanded in a similar way. The expansion, for in-
stance, for the component sR11 reads
sR11 ¼ h~u1~u1i ¼ hu1u1i ¼ hu1ihu1i
¼ uh1 þ u0h1 þ û1
� �

uh1 þ u0h1 þ û1
� �
 �

� huh1 þ u0h1 þ û1ihuh1 þ u0h1 þ û1i
� s

R;h
11 ¼ huh1uh1i � huh1ihuh1i ¼ uh1 þ u0h1

� �
uh1 þ u0h1
� �
 �

� huh1 þ u0h1 ihuh1 þ u0h1 i
¼ huh1uh1i � huh1ihuh1i
� �

þ 2 huh1u0h1 i � huh1ihu0h1 i
� �

þ hu0h1 u0h1 i � hu0h1 ihu0h1 i
� �

; ð57Þ
where the approximation in the third line of (57) describes the common practice in LES, mentioned in [67].
The three terms in square brackets in the fourth line of (57) may be denoted as the large–large, large–small,
and small–small contribution to the Reynolds stress tensor of the resolved scales in the third line. The val-
ues to be compared in the subsequent sections are the turbulent kinetic energy of the resolved scales
kh ¼ 1
2

uh1u
h
1 þ uh2u

h
2 þ uh3u

h
3


 �
� uh1

 �

uh1

 �

� uh2

 �

uh2

 �

� uh3

 �

uh3

 �� �

; ð58Þ
approximating half the trace of the Reynolds stress tensor sR and the small–small contribution to (58) sub-
ject to
k0h ¼ 1
2

u0h1 u
0h
1 þ u0h2 u

0h
2 þ u0h3 u

0h
3


 �
� u0h1

 �

u0h1

 �

� u0h2

 �

u0h2

 �

� u0h3

 �

u0h3

 �� �

;

as a measure for the amount of scales attributed to the small-scale range by the various scale-separating oper-
ators. Both kinetic energy values are scaled by u2s in the respective diagrams. All velocity and kinetic energy
values are depicted as profiles in the wall-normal x2-direction against the non-dimensional wall coordinate
xþ2 . As usual, only half of the channel width is illustrated (i.e., the upper half-width here, ranging from x2 =
0 to x2 = 1, see Fig. 5). Defining xþ2 ¼ ð1� x2Þus=m ¼ ð1� x2ÞRes=dc, the upper wall is located at xþ2 ¼ 0 and
the channel center at xþ2 ¼ Res=dc. Furthermore, the scaled profiles for huh1i are quantified by evaluating the
integral of their deviation from the respective DNS profiles in the L2-norm eu0 (i.e., an error measure with re-
spect to the DNS results) in the wall-normal x2-direction for the upper half-width of the channel subject to
eu0 ¼
uh1

 �þ

DNS
� uh1

 �þ

LES

��� ���
0

khuh1i
þ
DNSk0

¼
R x2¼1

x2¼0
huh1i

þ
DNS � huh1i

þ
LES

� �2
dx2R x2¼1

x2¼0
huh1i

þ
DNS

� �2
dx2

2
4

3
5

1=2

; ð59Þ
which is calculated as a discrete integral. The x2-integral of the deviation for the turbulent kinetic energy ek0
is evaluated analogously.

The discrete integral of the kinetic energy over the complete 3-D domain defined as
Eh ¼ 1

2

Xncv
i¼1

jXijuhi uhi
is also determined for the complete velocity as well as for the large- and small-scale part of the velocity,
respectively. Based on the discrete integral of the kinetic energy, a characteristic velocity uchar, subject to
uchar ¼

ffiffiffiffiffiffiffiffiffiffi
2
Eh

jXj

s
; ð60Þ
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is defined. Replacing the complete discrete integral of the kinetic energy by the large- and small-scale part in
(60) yields the characteristic large- and small-scale velocities uchar and u0char, respectively. u0char will be
exploited as a rough measure to evaluate the actual characteristic length-scale ratio for the various scale-
separating operators in relation to Ssm a posteriori. It is emphasized that this measure has to be handled
with care. On the one hand, it might be dependent on the respective flow problem. However, since there
is only one particular flow problem to be investigated in the present study, explicit conclusions may be
drawn only within the scope of this particular problem. On the other hand, the character of the respective
scale-separating operator has to be taken into account for any conclusions. For orthogonal projective oper-
ators (i.e., self-adjoint projectors), such as Spm, the total kinetic energy is explicitly split into a large-scale
part and a small-scale part. For operators not fulfilling this prerequisite, ‘‘cross’’ parts have to be expected
(i.e., the large- and the small-scale part are not explicitly separated).

Three different methods are compared:


 The dynamic Smagorinsky (DS) model based on the classical Germano identity in a non-multiscale
application, with the subgrid viscosity subject to (45).


 The constant-coefficient Smagorinsky (CMS) model within the multiscale environment subject to (19) or
(40), respectively, with the subgrid viscosity according to (46).


 The dynamic Smagorinsky (DMS) model based on the classical Germano identity within the multiscale
environment subject to (19) or (40), respectively, with the subgrid viscosity according to (46).

All of these methods are investigated for the four different scale-separating operators Spm, Ssm, Stf, and
Ssf, leading to 12 different methodical combinations overall. In the following diagrams, the acronym DMS-
PM, for instance, indicates the variational multiscale LES incorporating a dynamic Smagorinsky model
with the scale-separating operator Spm applied. Results are also reported for simulations using the con-
stant-coefficient Smagorinsky model in a non-multiscale environment (CS) as well as applying no model
at all (NM), which represents a coarse (i.e., not sufficiently resolved) DNS. It should be emphasized that
CMS is merely the combination of these last two approaches by applying no model to the large resolved
scales and the constant-coefficient Smagorinsky model to the small resolved scales. All of the acronyms
indicating the respective methods and scale-separating operators used in the numerical simulations are sum-
marized in Tables 1 and 2, respectively. The computational effort required for the various methodical com-
binations will also be evaluated in the upcoming sections.
Table 2
Acronyms for scale-separating operators used in the numerical simulations

Acronym Description

PM Projective multigrid operator
SM Smoothed multigrid operator
TF Discrete smooth filter (trapezoidal rule)
SF Discrete smooth filter (Simpson�s rule)

Table 1
Acronyms for methods used in the numerical simulations

Acronym Description

DNS DNS (simulation results from [48])
NM LES with no subgrid-scale model at all (coarse DNS)
CS Traditional LES with constant-coefficient-based Smagorinsky model
DS Traditional LES with dynamic Smagorinsky model
CMS Variational multiscale LES with constant-coefficient-based Smagorinsky model
DMS Variational multiscale LES with dynamic Smagorinsky model
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The characteristic length-scale ratio, which is required for the methods using the dynamic Smagorinsky
model (i.e., DS and DMS), has to be selected a priori for the various scale-separating operators. For Ssm, a
characteristic length-scale ratio of 2 is chosen, as already discussed in Section 3.4. Based on preliminary
results from CMS simulations, the characteristic length-scale ratio for all DS and DMS simulations is
set to 2.5 for Spm.

Remark. For Stf and Ssf, various characteristic length-scale ratios may be found and were actually used in
the literature. In [41], the ratio was, on the one hand, determined based on the second moment of the filter
function according to [39], which produced values of

ffiffiffi
6

p
and 2 for Stf and Ssf, respectively. Similar values

were achieved by an optimized approximation in [55]. On the other hand, the filter transfer function was
offered as a more general alternative for the determination of the characteristic filter width for filters with
vanishing moments in [41]. Based on the criterion that the filter width is taken to be proportional to the
inverse wave number where the filter transfer function falls to 0.5, values of 2 and 1.5 for Stf and Ssf were
obtained. This criterion was also used in [59]. All of these investigations were actually performed in a 1-D
setting, but may be extended to the 3-D case in a similar way as the actual filter is extended. Two simpler
definitions for the ratio were introduced for kernel filters in the sense of (1) in [64]. The first one is based on
the L2-norm of the kernel. Transferring this definition to the discrete 1-D case yields values of 2.67 and 2 for
Stf and Ssf, respectively. The second one is based on the central value of the filter function, and its transfer to
the discrete 1-D case reveals ratios of 2 and 1.5 for Stf and Ssf, respectively. Recapitulating, it is stated that
ambiguous specifications regarding the choice of the characteristic length-scale ratio for Stf and Ssf may be
found in the respective literature (i.e., 2.67,

ffiffiffi
6

p
, and 2 for Stf as well as 2 and 1.5 for Ssf). In actual 3-D

simulations, the trapezoidal filter Stf is often applied assuming a ratio of 2 (see, e.g., [33] or [63]). The
corresponding value for Ssf based, for instance, on the filter transfer function criterion would be 1.5, as
outlined above. All of the specifications mentioned so far have been related to structured grids. For the actual
unstructured version of Stf expressed in (24) and (25), a ratio of 2 was chosen for the applications in [22].

In the present study, ratios of 2 and 1.5 are applied for Stf and Ssf, respectively. This is in compliance
with the choice, at least for Stf, in [22], which is the only of the aforementioned studies applying a discrete
smooth filter based on the trapezoidal rule as given in (24) and (25) in an actual 3-D simulation on unstruc-
tured grids. The a priori chosen values for the characteristic length-scale ratio will be compared to the esti-
mated values based on the results obtained from the actual simulations.

6.3. Comparing the methods

In order to compare the various methods, the scale-separating operator Spm (i.e., the only projective
operator considered in the present study) is used for DS, CMS, and DMS. Figs. 6 and 7 depict the mean
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Table 3
x2-integral of the deviation from the DNS profile for the mean streamwise velocity eu0 and the turbulent kinetic energy ek0 according to
(59) for all methods (pm-separation)

Velocity (Res = 180) Energy (Res = 180) Velocity (Res = 590) Energy (Res = 590)

NM 1.52% 7.69% 0.87% 6.68%
CS 9.54% 90.02% 6.04% 78.73%
DS-PM 2.77% 14.34% 1.22% 6.99%
CMS-PM 0.43% 2.56% 0.20% 3.19%
DMS-PM 1.59% 7.88% 0.95% 6.91%
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streamwise velocity profile and the turbulent kinetic energy, respectively, for Res = 590. Table 3 provides a
quantitative picture by showing the x2-integral of the deviation from the DNS profile for Res = 180 and
Res = 590. A large numerical error introduced by a second-order accurate method in combination with
a relatively coarse resolution already mentioned in Section 1 comes into play for all methods. However,
the lower accuracy of the basic method affects CMS-PM to a far lesser extent than the other methods to-
wards the channel center. It is considerably closer to the DNS profile in this part of the channel than
NM, DS-PM, and DMS-PM. This qualitative observation can be quantified by analyzing the x2-integral
of the deviation from the DNS profile, see Table 3. CMS-PM is the only one of the investigated methods
producing deviations of less than 1% for Res = 180 and less than 0.5% for Res = 590. DMS-PM shows no
improvement in comparison to NM, and DS-PM performs even worse. Despite the higher accuracy in the
inertial layer (usually expected to start at xþ2 ¼ 30), CMS-PM underpredicts the velocity profile in the buffer
layer (usually expected to range from xþ2 ¼ 5 to xþ2 ¼ 30). The profile for the turbulent kinetic energy using
CMS-PM shows a much better agreement for the height of the peak in comparison to the DNS profile than
all other methods. DS-PM shows the worst correspondence to DNS, apart from CS, concerning the peak.
These observations can also be quantified by analyzing the x2-integral of the deviation from the DNS pro-
file, see Table 3. CMS-PM yields deviations of about 2.6% for Res = 180 and 3.2% for Res = 590, whereas
the next best method (i.e., NM) produces deviations of about 7.7% and 6.7%, respectively. It is emphasized
that NM outperforms all modeling approaches but CMS-PM at both Reynolds numbers. This is in accor-
dance with results in [38,56]. For the mean streamwise velocity profiles, which were obtained with a second-
order accurate method in those studies, DS was also more or less clearly outperformed by NM at even
higher Reynolds numbers Res � 1000 and Res � 1800.

An objective comparison of the computational effort for the simulations using the aforementioned
methods is difficult, since it strongly depends on the number of iterations necessary for the SOR solver
to achieve convergence as well as on the amount of computational time spent within the algebraic multigrid
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solver. These time measures can vary considerably from one calculation to another. Thus, only approxi-
mate measures for the necessary computational effort are reported as a mean value of the actual simulation
times covering all calculations of this work as well as additional calculations for finer resolutions in both
cases presented in [15]. Setting the computational effort for NM to 1.0, the relative measures for CS, DS-
PM, CMS-PM, and DMS-PM are, ca. 1.10, 1.15, 1.10, and 1.15, respectively. Thus, CMS in combination
with PM is a very efficient method computationally, even more efficient than DS.

6.4. Comparing the scale-separating operators

The second important issue concerns the differences between the various scale-separating operators. In
Figs. 8 and 9, the mean streamwise velocity and the turbulent kinetic energy, respectively, for the four scale-
separating operators applied with DS, CMS, or DMS are pictured for Res = 590. The x2-integrals of the
deviation from the respective DNS profiles for Res = 180 and Res = 590 are given in Table 4. The results
for the mean streamwise velocity are almost indistinguishable for DMS, and the ones for the turbulent ki-
netic energy are also very close, although PM and SM appear to perform slightly better, see Figs. 8 and 9(c).
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Table 4
x2-integral of the deviation from the DNS profile for the mean streamwise velocity eu0 and the turbulent kinetic energy ek0 according to
(59) for all scale-separating operators and methods DS, CMS, and DMS

Velocity (Res = 180) Energy (Res = 180) Velocity (Res = 590) Energy (Res = 590)

DS-PM 2.77% 14.34% 1.22% 6.99%
DS-SM 3.30% 19.03% 1.41% 6.58%
DS-TF 5.78% 42.75% 2.77% 7.64%
DS-SF 7.34% 43.26% 3.84% 7.79%

CMS-PM 0.43% 2.56% 0.20% 3.19%
CMS-SM 1.94% 8.63% 1.13% 6.02%
CMS-TF 3.47% 15.74% 1.23% 4.43%
CMS-SF 2.34% 11.45% 1.16% 5.82%

DMS-PM 1.59% 7.88% 0.95% 6.91%
DMS-SM 1.51% 9.21% 0.89% 6.90%
DMS-TF 2.27% 16.44% 0.93% 7.24%
DMS-SF 1.75% 12.02% 0.86% 7.62%
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For DS, better results for PM and SM are already visible for the mean streamwise velocity profile, see
Fig. 8(a). They are confirmed by the turbulent kinetic energy profile in Fig. 9(a). Most importantly, a
remarkable difference between the projective scale-separating operator PM and the other operators shows
up both for the mean streamwise velocity as well as for the turbulent kinetic energy profile in the context of
CMS, see Figs. 8 and 9(b). Thus, the favourable behaviour of CMS-PM in the inertial layer as well as the
slightly underpredictive performance in the buffer layer and parts of the viscous sublayer seems to be attrib-
uted to CMS exclusively depending on this specific scale-separating operator. Analyzing the quantitative
results in Table 4, it is apparent that CMS-PM yields the by far smallest deviations from the respective
DNS profiles for both the mean streamwise velocity and the turbulent kinetic energy with respect to the
flows at both Reynolds numbers.

Specifying the necessary computational effort for the various scale-separating operators results in the fol-
lowing approximate numbers, where the results for the finer resolutions in [15] are also taken into account.
Setting the relative computational simulation time for the operator PM to 1.0, the measures for SM, TF,
and SF are approximately 1.25, 1.40, and 2.50, respectively. In particular, SF in the current implementation
is an extremely time-consuming operator and is, therefore, not recommended for further use. As already
mentioned at the end of Section 5, the reason for the additional effort linked with such non-projective oper-
ators can be traced back to the call of the scale-separating routine at the beginning of each solver iteration
step, in order to determine the updated large-scale velocity field for the residual calculation.

Remark. For the simulations with finer resolutions, which are discussed in an extended version of the
present study [15], the large numerical error appearing in the results of Sections 6.3 and 6.4 is greatly
reduced, and all LES profiles converge to the DNS profile. Therefore, the differences between the various
methods and scale-separating operators investigated in Sections 6.3 and 6.4 become less obvious.
6.5. Extracting and investigating the small scales

In order to analyze the specific behaviour of CMS-PM in comparison to all other scale-separating oper-
ators in the context of CMS, the small scales are extracted and investigated explicitly in this section. Figs. 10
and 11 depict the mean streamwise small-scale velocity and the small-scale turbulent kinetic energy, respec-
tively, for Res = 590. Qualitatively similar results have been obtained for Res = 180, see [15]. The small-
scale velocity for CMS-PM shows an oscillating behaviour with large amplitudes, particularly in the buffer
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layer. For CMS-SM, the frequency of the oscillation is about the same, but the amplitudes are considerably
smaller. In the case of CMS-TF and CMS-SF, one oscillation period can be seen throughout one half-width
of the channel, with the amplitude being larger for CMS-TF than for CMS-SF. The largest small-scale tur-
bulent kinetic energy is obtained for CMS-PM and the smallest one for CMS-SF, evaluated by evidence of
the x2-integral of the small-scale turbulent kinetic energy profiles (i.e., the integral of the curves in Fig. 11).
This represents a first measure for the amount of small scales extracted by the respective scale-separating
operator and will be quantified in the second part of this section. All of the aforementioned observations
are qualitatively confirmed by the results from the finer resolutions in [15].

The second part of this section is devoted to determining an actual value for the characteristic length-
scale ratio of the various scale-separating operators with the aid of the results from the CMS simulations.
Table 5 contains the results for Res = 180. The analogous data for Res = 590 are contained in Table 6.
Table 5
Characteristic velocity scales and velocity scale ratios for CMS and Res = 180

(1): Char. velocity (2): Char. l. � s. vel. (3): Char. s. � s. vel. (4) = (3)/(1) (%) (5) = 2 · (4)/(4) � SM

PM 17.23 17.17 1.33 7.72 2.46
SM 18.31 18.27 1.15 6.28 2.00
TF 19.34 19.26 1.00 5.17 1.65
SF 18.66 18.59 0.73 3.91 1.25



Table 6
Characteristic velocity scales and velocity scale ratios for CMS and Res = 590

(1): Char. velocity (2): Char. l. � s. vel. (3): Char. s. � s. vel. (4) = (3)/(1) (%) (5) = 2 · (4)/(4) � SM

PM 19.66 19.63 1.08 5.49 2.54
SM 20.30 20.28 0.88 4.33 2.00
TF 20.58 20.54 0.75 3.64 1.68
SF 20.37 20.34 0.57 2.80 1.29
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Columns (1)–(3) exhibit the characteristic velocity uchar subject to (60) as well as the large- and small-scale
part �uchar and u0char, respectively. In column (4), the ratio of u0char to uchar gives a quantitative value for the
amount of small scales extracted by the various scale-separating operators. These values are then related to
the a priori assumed ratio 2 for SM, in order to obtain characteristic length-scale ratios for the remaining
operators relative to this fixed value. The mean ratio for PM in Tables 5 and 6 is 2.5 (i.e., exactly the value
chosen a priori). Considering also the finer resolutions in [15], the mean ratio increases to 2.65, but is still
fairly close to the chosen value of 2.5. Furthermore, it may be observed that the choice of 2 and 1.5 for TF
and SF, respectively, is, at least, a more reasonable one than

ffiffiffi
6

p
(or even 2.67) and 2. The calculations in

the present study, however, suggest even lower values of about 1.7 and 1.3, respectively. It has to be re-
emphasized that the preceding quantitative assessment based on the numbers in Tables 5 and 6 has to
be considered an approximate quantification, see the related discussion in Section 6.2.

6.6. Further investigation in an artificial setup

Surprisingly good results for CMS-PM in comparison to the other combinations shown in Sections 6.3
and 6.4 have given rise to an additional investigation. In this examination, the addition of the subgrid vis-
cosity is artificially confined to the buffer layer of the channel. By analyzing the curves obtained for the
mean value of the dynamically determined model parameter ÆCSæ in [15], it has been found that the
most important difference between CMS and DMS occurs in the region close to the wall, where ÆCSæ is
much smaller than the constant value CS = 0.1. Thus, the artificial setup looks as follows. A constant-
coefficient-based CMS-PM calculation is conducted, where a constant value for CS = 0.1 is applied only
in the buffer layer (i.e., between xþ2 ¼ 5 and xþ2 ¼ 30). Everywhere else in the channel domain, a no-model
strategy is pursued. The same is done for the non-multiscale case CS, to provide a direct comparison. Leav-
ing aside the viscous sublayer, this strategy is motivated by the observation that in this particular range a
notable difference between the dynamically determined values for ÆCSæ and the a priori chosen constant
occurs.
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The results obtained in this artificial setup are reported in Figs. 12 and 13 for Res = 590, respectively.
Qualitatively similar results have been obtained for Res = 180, see [15]. A huge difference for CS is ob-
served, although this now leads from a clear overprediction to a distinct underprediction in the inertial
layer, particularly for the higher Reynolds number case. The more important result of this investigation,
however, is that the differences between CMS-PM in this artificial setup and in the usual setup are only
of very small amount and, thus, insignificant. This indicates the relative importance of adding a relatively

high subgrid viscosity to the small scales in the buffer layer and the relative unimportance of the amount of

subgrid viscosity added to the small scales in other parts of the channel for the quality of the results overall.
The situation is completely different, if the addition of subgrid viscosity is not restricted to the small scales
(i.e., for CS). In this case, the addition of subgrid viscosity in all parts of the channel has a huge impact on
the results in all parts of the channel.

From the physical point of view, it is well known that the buffer layer is the site of vigorous turbulence
dynamics, with the turbulent energy production rate reaching its maximum within this region (see, e.g.,
[60]). Overall, a very intense dissipation has to be expected in this region, according to, e.g., analyses of
DNS databases in [20]. This may underline the necessity to let a considerably high amount of subgrid vis-
cosity act particularly on the small scales in this region. However, it was shown in [20] that a considerable
amount of backscatter can also be observed in this region, especially around xþ2 ¼ 12. It is referred to [20]
for elaboration. Note that the actual location strongly depends on the Reynolds number, since xþ2 ¼ x2 Res
for the channel with a half-width of unit length (i.e, the location is closer to the wall for higher Reynolds
number). There is no possibility to account for this with a subgrid-viscosity model as it is used in this work,
even when it is embedded into the multiscale environment. This might be considered a potential reason why
CMS-PM still shows deficient (i.e., underpredictive) results in this region.

A potential numerical influence, which also has to be considered in this context, may be traced back to
the effect of mesh stretching. This effect has recently been detected for finite difference methods in [30] and
for the staggered finite volume method underlying the original CDP code (see [52]) in [2]. Mesh stretching
ratios up to about 60 were investigated in [2]. In particular, the upper limit ratio of about 60 was analyzed
for various subgrid-scale models. It was shown that the dynamic Smagorinsky model is differently influ-
enced within a multiscale and a non-multiscale environment (i.e., DMS and DS). The most important dif-
ferences to the present investigation can be found in the differences between the original CDP code and the
present CDP-a code (i.e., among other things, the switch from a staggered to a colocated variable arrange-
ment for the underlying finite volume method), relatively lower mesh stretching ratios of about 10 and 20
for Res = 180 and Res = 590, respectively, and the particular focus on the constant-coefficient-based Sma-
gorinsky model, at least in this additional investigation in an artificial setup, although a different influence
of a potential mesh stretching effect on CMS and CS might also be expected.
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6.7. Summary of observations

The most important observations from the preceding investigations are summarized in the following.


 Different behaviour as a result of using different scale-separating operators can be recognized. This dif-
ference is particularly observable in the context of CMS and DS. The use of DMS seems to eliminate
differences to a great extent, see Table 4. For instance, the velocity deviation eu0 for DMS using various
scale-separating operators ranges from 1.51% to 2.27% for Res = 180 (i.e., a band of 0.76%) and from
0.86% to 0.95% for Res = 590 (i.e., a band of 0.09%). The respective bands for DS (CMS) are: 3.01%
(3.04%) for Res = 180 and 2.62% (1.03%) for Res = 590. It is interesting to note that the differences
between the various scale-separating operators diminish with increasing Reynolds number for all meth-
ods. For finer resolutions, the aforementioned relative trends among the various methods and scale-sep-
arating operators are qualitatively similar, although the absolute values for the velocity and energy
deviations become smaller, see [15].


 The scale-separating operator PM plays a specific role in this context due to its projective property,
which is not shared by any of the other operators. This specific role is underlined by the results of
the numerical simulations, at least in the context of CMS, where the results show the most significant
differences to all other methodical combinations.


 The scale-separating operators PM and SM proposed in this work are superior to the discrete smooth
filters TF and, particularly, SF as implemented concerning the important issue of computational cost
(i.e., a reduction of about 25%, 40%, and 150% for PM compared to SM, TF, and SF, respectively).
The use of PM may even reduce the required computational effort for CMS to a value lower than the
one for the widely used DS combined with any scale-separating operator (i.e., in particular, a reduction
of about 5% for CMS with PM compared to DS with PM). For all other operators (i.e., SM, TF, and
SF), the computational effort for CMS is larger than the one for DS.


 Cross-comparison of the methods DS, CMS, and DMS (see Figs. 8 and 9) without specific reference to
any of the scale-separating operators reveals better results for the multiscale methods CMS and DMS
with respect to DS. The quality of the results ranges from slightly to significantly better, depending
on the Reynolds number and the resolution level. For the simulations in the present study, this may
be quantified using the results in Table 4. The mean values for eu0 ðe0kÞ, taking into account all scale-
separating operators, are 4.80% (29.85%), 2.05% (9.60%), and 1.78% (11.39%) for DS, CMS, and
DMS, respectively, for Res = 180. For Res = 590, the respective mean values for DS, CMS, and DMS
are 2.31% (7.25%), 0.93% (4.87%), and 0.91% (7.17%). With the resolution being refined, the results
for the various methods converge, see the respective results in [15].


 Surprisingly, the apparently more sophisticated and more costly dynamic method DMS shows no better,
or even worse results than the simple constant-coefficient-based method CMS. This indicates that the
dynamic modeling procedure does not appropriately determine the model parameter in the context of
the variational multiscale LES.


 Even for the classical dynamic model procedure DS, the use of the scale-separating operators PM
and SM proposed in this work seems to be more favourable in comparison to the classical discrete
smooth filters TF and SF, both from the standpoint of quality of results as well as computational
cost.


 The no-model approach (NM) outperforms all methodical combinations but CMS-PM within the pres-
ent numerical setup. This confirms results in [38,56] and raises doubts about the usefulness of all those
subgrid-scale modeling approaches within a second-order accurate numerical method, except for the
particular combination CMS-PM.


 Characteristic length-scale ratios for the various scale-separating operators can be (at least) approxi-
mately estimated from the results.
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 The importance of introducing a substantial amount of subgrid viscosity to the small scales, particularly
in the buffer layer of the channel, is pointed out. A still existing potential deficiency of the variational
multiscale LES due to the inability to account for backscatter with the models chosen in this work is
also pointed out.
7. Conclusions

A general class of scale-separating operators based on combined multigrid operators has been pro-
posed and analyzed in this work. Two operators of this class have been compared to widely used dis-
crete smooth filters, and essential differences have been pointed out. In particular, it has been shown that
the scale-separating operators are not only theoretically different, but also yield considerable differences
in the respective numerical results for the problem simulated. All operators are suited for variational
multiscale LES, both with dynamic and constant-coefficient-based subgrid-scale modeling. They may
also be used for the dynamic modeling procedure in a classical LES. Only one of the scale-separating
operators proposed, however, exhibits the important idempotence property of a projector, allowing ful-
fillment of the theoretical assumption for a clear scale separation within the variational multiscale
method.

All of the scale-separating operators have been implemented in a second-order accurate, energy-conserving
finite volume method particularly suited for incompressible Navier–Stokes flow applications on hybrid
unstructured grids in complex geometries. Dynamic and non-dynamic subgrid-scale modeling methods
based on the various scale-separating operators have been tested for the case of a turbulent channel flow
with relatively coarse resolutions at two different Reynolds numbers. Several important observations have
been made and summarized in the preceding section. With respect to certain crucial flow features, the sim-
ple constant-coefficient Smagorinsky-model based variational multiscale method in combination with the
projective operator has shown remarkable results. In particular, it has proven to be a very efficient combi-
nation with regard to the important aspect of computational cost, resulting in a reduction in computing
time ranging from about 25% up to about 150% compared to the other operators. The introduction of a
substantial amount of subgrid viscosity to the small scales, particularly in the buffer layer of the channel,
appears to be crucial for the good results achieved with this method. A potential deficiency may still be
found in the impossibility to account for backscatter with the subgrid viscosity concept, even within the
multiscale environment. More sophisticated subgrid-scale models which take backscatter into account
may lead to additional improvement. It is intended to investigate the performance of the scale-separating
operators based on combined multigrid operators in the context of the methods used in this work on further
flow problems in subsequent studies.
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